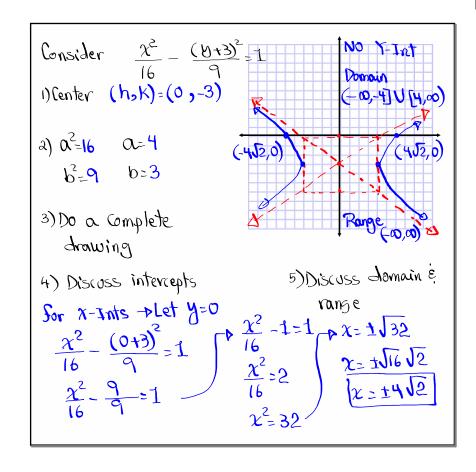
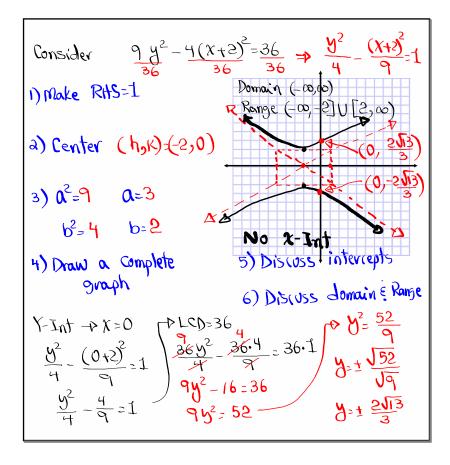
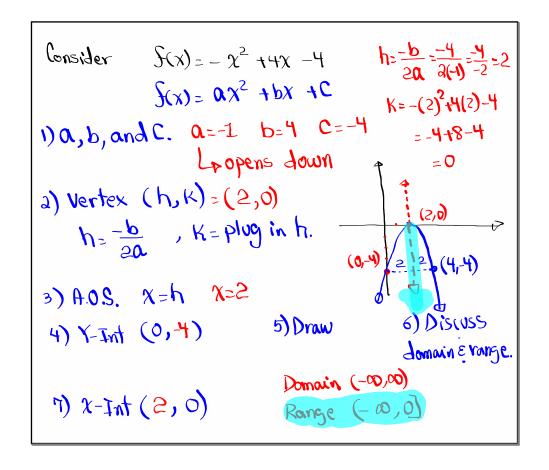

Class QZ 21


Sind a quadratic equation in
$$0x^2+bx+c=0$$

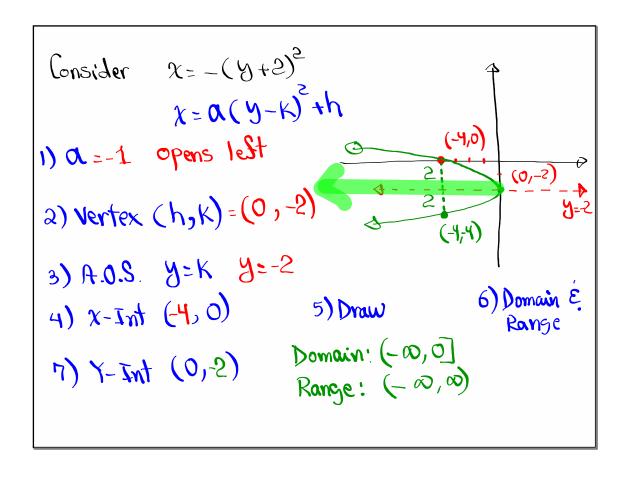

Sorm with Solutions $3\pm 2\sqrt{5}$.

 $x=3+2\sqrt{5}$
 $x=3+2\sqrt{5}$
 $x=3-2\sqrt{5}$
 $x=3-2\sqrt{5}$
 $x=3+2\sqrt{5}=0$
 $(x-3+2\sqrt{5})=0$
 $(x-3)(x-3)=0$
 $(x-3)(x-3)=0$



Consider
$$S(x) = 2(x-1)^2 - 2$$

 $S(x) = 2(x-1)^2 + 1$
1) $a = 2$, opens up
2) Vertex $(h, K) = (1, -2)$
3) A.O.S. $x = h$ $x = 1$
4) Y-Int $(0,0)$ Domain $(-\infty,\infty)$, Pange $[-2,\infty)$
5) Draw


6) Discuss Johnain ε range

7) $x - T_n t$ $(0,0)$, $(2,0)$

Sideway Parabolas:
$$\chi = (y-2)^2 + 3$$
 $\chi = \alpha (y-K)^2 + h$, $0 \neq 0$
 $\chi = 1$ opens right

 $\chi = 0$
 χ

Sideway Parabolas:

$$\chi = a y^2 + by + C, a \neq 0$$
 $\chi = y^2 - 4y$
aso $\chi = a y^2 + by + C, a \neq 0$ $\chi = 1$ opens right
b=-4
Vertex (h, K) $C = 0$
 $K = \frac{-b}{2a} = \frac{-(-4)}{2(4)} = \frac{4}{2} = 2$
 $h = Plug \text{ in } K$ $h = 2^2 - 4(2) = 4 - 8 = -4$
 $\chi = Int (0,0)$
 $\chi = Int (0,0)$

Consider
$$\chi = \frac{1}{2}y^2 + 2$$
 $K = \frac{b}{2a} = \frac{0}{2(\frac{1}{2})} = \frac{0}{-1} = 0$
 $\chi = 0$ $y^2 + b$ $y + c$ $h = \frac{1}{2}(0)^2 + 2 = 2$
 $\chi = 0$ $y^2 + b$ $y + c$ $h = \frac{1}{2}(0)^2 + 2 = 2$
 $\chi = 0$ $y + b$ $y + c$ $h = \frac{1}{2}(0)^2 + 2 = 2$
 $\chi = 0$ $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi = 0$ $\chi = 0$
 $\chi =$

Consider
$$x=y^2-6y+10$$

1) $0=1$, $b=-6$, $c=10$

Loopens Right

2) Vertex $(h,K)=(1,3)$
 $K=\frac{-b}{20}=\frac{-(-6)}{2(1)}=\frac{6}{2}=3$
 $h=Plug$ in K $h=3^2-6(3)+10=1$

Range: $(-\infty,\infty)$

3) A.O.S. $y=K$ $y=3$

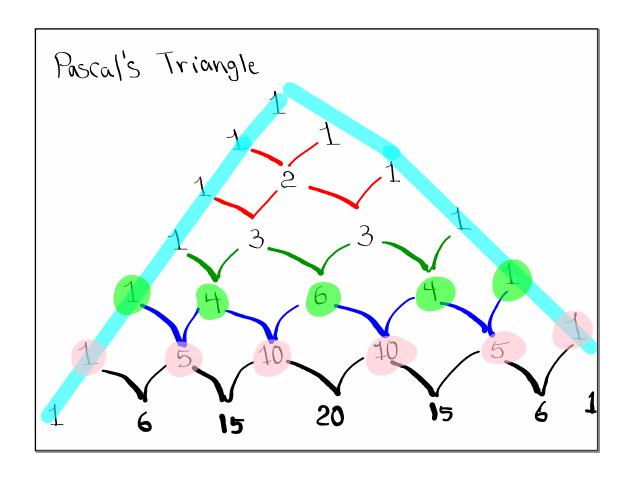
Y-Int: None

4) $x-Int$ $(10,0)$

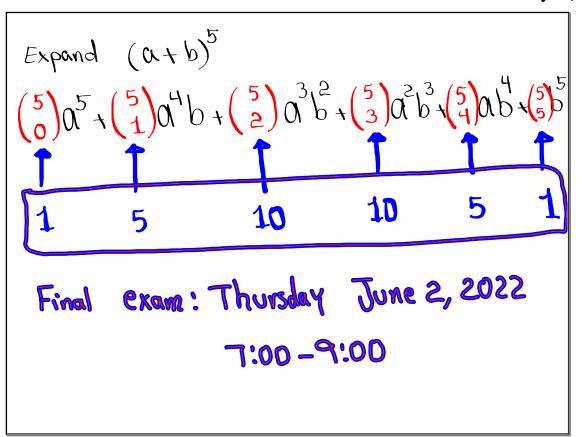
5) Draw

6) Domain ε

Range


\$6 + 30\$

I Factorial


$$m! = m \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$
 $0! = 1$
 $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
 $6! - 3! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 - 3 \cdot 2 \cdot 1$
 $= 720 - 6 = 714$
 $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 56 \cdot 30 = 1680$
 $4! = \frac{3 \cdot 8 \cdot 7 \cdot 6!}{6! \cdot 3!} = \frac{3 \cdot 4 \cdot 7}{6! \cdot 3!} = \frac{3 \cdot 4 \cdot 7}{6!} = \frac{3$

Binomial Coef.:

$$\begin{pmatrix}
n \\
r
\end{pmatrix} = n^{C}r = \frac{n!}{r! \cdot (n-r)!}$$
 $\begin{pmatrix}
9 \\
4
\end{pmatrix} = 0^{C}4 = \frac{9!}{4! \cdot 5!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{4! \cdot 32 \cdot 1 \cdot 5!}$
 $= 9 \cdot 2 \cdot 7 = 126$
 $\begin{pmatrix}
12 \\
5
\end{pmatrix} = 125 = \frac{12!}{5! \cdot 7!} = \frac{12 \cdot 11 \cdot 16 \cdot 9 \cdot 8 \cdot 3!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3!}$
 $= 11 \cdot 9 \cdot 8 = 792$

Binomial Expansion
$$a+b \neq 0$$

 $(a+b)^0 = 1$
 $(a+b)^1 = a+b$
 $(a+b)^2 = a^2 + 2ab + b^2$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 $(a+b)^4 = a^4 + a^3b + a^2b^2 + a^3b^4$
 $(a+b)^4 = a^4 + a^3b + a^2b^2 + a^3b^4$
 $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$

